

N :

= Hdp OI1

0
7 group.
O
" * Users can easily scale Hadoop to store and process petabytes of data in the web
_space.

“

* Also, Hadoop 1s economical in that it comes with an open source version of

MapReduce that minimizes overhead in task spawning and massive data
communication.

*It is efficient, as it processes data with a high degree of parallelism across a

large number of commodity nodes, and 1t is reliable in that 1t automatically
keeps multiple data copies to facilitate redeployment of computing tasks upon
unexpected system failures.

* Hadoop provides the runtime environment, and developers need to provide
only the input data and specify the map and reduce functions that need to be
executed.

®* Hadoop 1s an integral part of the Yahoo! cloud infrastructure and supports
several business processes of the company.

®* Currently, Yahoo! manages the largest Hadoop cluster in the world, which 1s

also available to academic institutions.

WHY USE HADOOQOP?
*Cheaper

* Scales to Petabytes or
more

*Faster
* Parallel data processing

e Better

* Suited for particular types
of BigData problems

HADOOP LIBRARY FROM APACHE

*Hadoop is an open source implementation of MapReduce coded and

released 1n Java (rather than C) by Apache.

*The Hadoop implementation of MapReduce uses the Hadoop

Distributed File System (E

ES) as its underlying layer rather than

GFS.

*The Hadoop core i1s divided imnto two fundamental layers: the

MapReduce engine and E

FS.

*The MapReduce engine 1s the computation engine running on top of

HDFES as its data storage manager.

*The followine two sections

cover the details of these two fundamental

A HDES: /

- HDFS Architecture:

master

ze blocks (e.g., 64

* The mapijiﬁ blocks ined by the NameNode. A

* The NameNode (master) also manages the file system’s metadata and namespace. .

* In such systems, the namespace is the area maintaining the metadata, and metadata /
@)

refers to all the information stored by a file system that is needed for overall

HDFS Architecture

etadata ops MetaData (Name, replicas,....) :

NameNode /hime /foo / data,,....

Block Ops

DataNodes DataNodes

\ 4 »
. L Replication El
' n

* For example, NameNode in the metadata stores all information regarding the location
of input splits/blocks in all DataNodes.

* Each DataNode, usually one per node in a cluster, manages the storage attached to the

node.

* Each DataNode 1s responsible for storing and retrieving its file blocks.

* Distributed file systems have special requirements, such as performance, scalability,
concurrency control, fault tolerance, and security requirements, to operate efficiently.

* However, because HDFS is not a general-purpose file system, as it only executes
specific types of applications, it does not need all the requirements of a general
distributed file system.

* For example, security has never been supported for HDFS systems.

* The following discussion highlights two important characteristics of HDFS to

ARars s ms@ls it oavea At Rare mvaraaee e A lad e ertayAl e esorar ey eeve

~ HDFS Fault Tolerance: .

reliability

llcatlon HDFS, file blocks are replicated

in this system.
// *In other words, HDFS stores a file as a set of blocks and each block is
/m

replicated and distributed across the whole cluster.

p AN e () - Y

The placement of replicas is another factor to fulfill the
desired fault tolerance in HDFS.

* Although storing replicas on different nodes (DataNodes) located in different

racks across the whole cluster provides more reliability, it 1s sometimes 1gnored
as the cost of communication between two nodes in different racks 1s relatively
high in comparison with that of different nodes located in the same rack.

* Therefore, sometimes HDFS compromises its reliability to achieve lower

communication costs.

* For example, for the default replication factor of three, HDFS stores one replica

in the same node the original data is stored, one replica on a different node but
in the same rack, and one replica on a different node in a different rack to
provide three copies of the data.

Heartbeats and Blockreports are

periodic messages sent to the NameNode by each DataNode 1n a cluster.

* Receipt of a Heartbeat implies that the DataNode 1s functioning properly, while

each Blockreport contains a list of all blocks on a DataNode.

* The NameNode receives such messages because it 1s the sole decision maker of

all replicas 1n the system.

*Because HDFS 1s primarily designed for batch processing rather than

interactive processing, data access throughput in HDFS 1s more important than
latency.

* Also, because applications run on HDEFS typically have large data sets,
individual files are broken into large blocks (e.g., 64 MB) to allow HDEFS to

* This provides two advantages: The list of blocks per file will shrink as the size

of individual blocks increases, and by keeping large amounts of data
sequentially within a block, HDFS provides fast streaming reads of data.

*The control flow of HDFS operations such as write and read can properly

highlight roles of the NameNode and DataNodes in the managing operations.

*In this section, the control flow of the main operations of HDFS on files is

further described to manifest the interaction between the user, the NameNode,
and the DataNodes 1n such systems.

To read a file in HDFS, a user sends an “open” request to the

NameNode to get the location of file blocks.

*For each file block, the NameNode returns the address of a set of DataNodes

* The number of addresses depends on the number of block replicas.

* Upon receiving such information, the user calls the read function to connect to
the closest DataNode containing the first block of the file.

* After the first block 1s streamed from the respective DataNode to the user, the

established connection is terminated and the same process 1s repeated for all
blocks of the requested file until the whole file 1s streamed to the user.

To write a file in HDFS, a user sends a “create” request to

the NameNode to create a new file in the file system namespace.

*If the file does not exist, the NameNode notifies the user and allows him to

start writing data to the file by calling the write function.

* The first block of the file 1s written to an internal queue termed the data queue

while a data streamer monitors 1ts writing into a DataNode.

e first

|
‘a replica of the

Tirst o

* Once this replication process is finalized, the same process starts for the second

block and continues until all blocks of the file are stored and replicated on the
file system.

[

MAP REDUCE

* This 1s a web programming model for scalable data processing on large clusters over
large data sets.

* The model is applied mainly in web-scale search and cloud computing applications.
* The user specifies a Map function to generate a set of intermediate key/value pairs.

* Then the user applies a Reduce function to merge all intermediate values with the
same Intermediate key.

* MapReduce is highly scalable to explore high degrees of parallelism at different job
levels.

* A typical MapReduce computation process can handle terabytes of data on tens of

thousands or more client machines.

* Hundreds of MapReduce programs can be executed simultaneously; in fact, thousands

f\‘p“‘ﬁ“D I\A‘I‘Inf\ 1’(\1\(’1 ol ade N f\‘ff\n1‘l+f\f1 Vat =) ril\f\f\"lf\,ﬁ I\]11(’1+f\1/‘(’1 AN Tr29*Y 7 Aﬂ‘r

The overall MapReduce word count process

Splitting Mapping Shuffling Reducing Final result

Bear, 1 Bear, 2

Bear, 1
Deer Bear River

Deer Bear River
Car Car River
Deer Car Bear

Car, 1
Car, 1

Car, 1
Car Car River

Deer, 1
Deer, 1

Deer Car Bear

River, 1

River, 1

ARCHITECTURE OF MAPREDUCE IN HADOOQOP

*The topmost layer of Hadoop 1s the MapReduce engine that manages the

data flow and control flow of MapReduce jobs over distributed computing
systems.

*The following figure shows the MapReduce engine architecture
cooperating with HDFS.

*Similar to HDFS, the MapReduce engine also has a master/slave

architecture consisting of a single JobTracker as the master and a number
of TaskTrackers as the slaves (workers).

JobTracker
MapReduce

engnie

HDFS

TaskTracker

Blocks

TaskTracker

*The JobTracker manages the MapReduce job over a cluster and 1s responsible
for monitoring jobs and assigning tasks to TaskTrackers.

*The TaskTracker manages the execution of the map and/or reduce tasks on a
single computation node in the cluster.

* Each TaskTracker node has a number of simultaneous execution slots, each
executing either a map or a reduce task.

* Slots are defined as the number of simultaneous threads supported by CPUs of
the TaskTracker node.

* For example, a TaskTracker node with N CPUs, each supporting M threads, has

M * N simultaneous execution slots.

* [t is worth noting that each data block is processed by one map task running on
a single slot.

®* Therefore, there 1s a one-to-one correspondence between map tasks in a

RUNNING A JOB IN HADOOP

* Three components contribute in running a job in this system: a user node,
a JobTracker, and several TaskTrackers.

*The data flow starts by calling the runJob(conf) function inside a user

program running on the user node, in which conf 1s an object containing
some tuning parameters for the MapReduce framework and HDFS.

*The runJob(conf) function and conf are comparable to the

MapReduce(Spec, &Results) function and Spec in the first implementation
of MapReduce by Google.

*The following figure depicts the data flow of running a MapReduce job 1n
Hadoop.

JobTracker

‘\

Task Sl = R Heartbeat
assignment .

-

-

Blocks

i ® Job Submission =

mputed

~*Task assignment ach computed input

split by the) the execution slots of the
TaskTrackers. _

* The JobTracker considers the localization of the data when assigning the map tasks to
the TaskTrackers. /
O

/ * The JobTracker also creates reduce tasks and assigns them to the TaskTrackers.

\ eTask execution (

*Task running check by receiving

ackers.

'Each hea beat | ndlng TaskTracker 1s alive,

/ and whether the sending Task [racker is ready to run a new task.

/

\ What is a Virtual Machine? G

What would you use a Virtual Machine for?

'Testmg out a Op

// * Running software that is not compatible with your current OS.

‘ Creating a secure environment for web browsing.

N

A

VirtualBox ~

: Us

al drives, removable storage

and network controlle

management through a web interface.

* Support VPN and Remote Desktop functions as well as Java based remote
/m

L] L] L] I
o N1 N T 5% & A“t1an nft () nen At D) 1ro a A1 2 a a

! | Tools
Juu
ovs34-efi
@ pPowered Off

s ubuntu-18.04
> Running

64 win2016srv
2 Running

8 centos7

@ Powered Off

@ OracleLinux?
“’ Running

(1] OracleLinux6

@ Powered Off

64 ol7-vbox6
@ powered Off

Oracle VM VirtualBox Manager

M General

Name: ubuntu-18.04
Operating System: Ubuntu (64-bit)
Settings File Location: /Users/scr/VirtualBox/ubuntu-18.04

(& System

Base Memory: 4096 MB
Boot Order: Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging, KVM Paravirtualization

M General

Name: win2016srv
Operating System: Windows 2016 (64-bit)
Settings File Location: /Users/scr/VirtualBox/win2016srv

(&| System

Base Memory: 8192 MB
Boot Order: Hard Disk, Optical, Floppy
Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX

B General

Name: OracleLinux?7
Operating System: Oracle (64-bit)
Settings File Location: /Users/scr/VirtualBox/OracleLinux7

\A| System

Base Memory: 8192 MB

Processors: 2

Boot Order: Hard Disk, Optical

Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX, KVM Paravirtualization

M preview

M Preview

.

B Preview

GAE - GOOGLE APP ENGINE

* Google has the world’s largest search engine facilities.

* The company has extensive experience in massive data processing that has led to

new insights into data-center design and novel programming models that scale to
incredible sizes.

* The Google platform 1s based on its search engine expertise, but as discussed earlier
with MapReduce, this infrastructure 1s applicable to many other areas.

* Google has hundreds of data centers and has installed more than 4,60,000 servers
worldwide.

* For example, 200 Google data centers are used at one time for a number of cloud
applications.

* Data items are stored 1n text, images, and video and are replicated to tolerate faults or
failures.

* Here we discuss Google’s App Engine (GAE) which offers a PaaS platform

GOOGLE CLOUD INFRASTRUCTURE

* Google has pioneered cloud development by leveraging the large number of
data centers 1t operates.

*For example, Google pioneered cloud services in Gmail, Google Docs, and
Google Earth, among other applications.

* These applications can support a large number of users simultaneously with
HA.

* Notable technology achievements include the Google File System (GEFS),
MapReduce, BigTable, and Chubby.

*In 2008, Google announced the GAE web application platform which is
becoming a common platform for many small cloud service providers.

* This platform specializes in supporting scalable (elastic) web applications.

I P, P - - - & P P - e

GAE ARCHITECTURE

* The following fig shows the major building blocks of the Google cloud platform
which has been used to deliver the cloud services highlighted earlier.

* GFS is used for storing large amounts of data.

* MapReduce is for use in application program development.

* Chubby 1s used for distributed application lock services.

* BigTable offers a storage service for accessing structured data.

* Users can interact with Google applications via the web interface provided by each
application.

® Third-party application providers can use GAE to build cloud applications for

providing services.

* The applications all run 1n data centers under tight management by Google engineers.

Scheduler GFS master

v

Application
% _ ﬁ Google cloud &
!]_J;l Sl - infrastructure ¢/

/
User Node e O
Q ﬁ : MapReduce

Node Node | job

|
Scheduler
slave

*Google 1s one of the larger cloud application providers, although its

fundamental service program i1s private and outside people cannot use the
Google infrastructure to build their own service.

*The building blocks of Google’s cloud computing application include the
Google File System for storing large amounts of data, the MapReduce

programming framework for application developers, Chubby for distributed
application lock services, and BigTable as a storage service for accessing
structural or semi structural data.

* With these building blocks, Google has built many cloud applications.

* A typical cluster configuration can run the Google File System, MapReduce

jobs, and BigTable servers for structure data.

* Extra services such as Chubby for distributed locks can also run in the clusters.

®* GAE runs the user program on Google’s infrastructure.

* As it 1s a platform running third-party programs, application developers now do

not need to worry about the maintenance of servers.

* GAE can be thought of as the combination of several software components.

*The frontend 1s an application framework which 1s similar to other web
application frameworks such as ASP, J2EE, and JSP.

* At the time of this writing, GAE supports Python and Java programming

environments.

* The applications can run similar to web application containers.

* The frontend can be used as the dynamic web serving infrastructure which can

provide the full supnort of common technologies.

FUNCTIONAL MODULES OF GAE

* The GAE platform comprises the following five major components.

* The GAE is not an infrastructure platform, but rather an application development platform
for users.

* We describe the component functionalities separately.

a) The datastore offers object-oriented, distributed, structured data storage services based on
BigTable techniques. The datastore secures data management operations.

b) The application runtime environment offers a platform for scalable web programming and
execution. It supports two development languages: Python and Java.

C) The software development kit (SDK) is used for local application development. The SDK
allows users to execute test runs of local applications and upload application code.

d) The administration console 1s used for easy management of user application development
cycles, instead of for physical resource management.

6) The GAE web service infrastructure provides special interfaces to guarantee flexible use
and management of storage and network resources by GAE.

* Google offers essentially free GAE services to all Gmail account owners.

® You can register for a GAE account or use your Gmail account name to sign up for
the service.

* The service 1s free within a quota.

* If you exceed the quota, the page instructs you on how to pay for the service.
* Then you download the SDK and read the Python or Java guide to get started.
* Note that GAE only accepts Python, Ruby, and Java programming languages.

* The platform does not provide any [aaS services, unlike Amazon, which offers Iaas
and PaaS.

* This model allows the user to deploy user-built applications on top of the cloud
infrastructure that are built using the programming languages and software tools
supported by the provider (e.g., Java, Python). Azure does this similarly for .NET.

® The user does not manage the underlying cloud infrastructure.

® The clonid nrovider facilitatee <aimnnort of annlication develonment te<tino and

ded by

,.

oud applications for

PI’OV 12 SCI

. *The applications are all run in the Google data centers.

© ®Inside each data center, there might be thousands of server nodes to form /
O

/ﬁ different clusters.
I

GAE APPLICATIONS

* GAE supports many web applications.
* One 1s a storage service to store application-specific data in the Google infrastructure.

* The data can be persistently stored in the backend storage server while still providing

the facility for queries, sorting, and even transactions similar to traditional database

systems.

* GAE also provides Google-specific services, such as the Gmail account service (which

1s the login service, that is, applications can use the Gmail account directly).

®*This can eliminate the tedious work of building customized user management

components in web applications.

* Thus, web applications built on top of GAE can use the APIs authenticating users and

sending e-mail using Google accounts.

PROGRAMMING ENVIRONMENT FOR
GOOGLE APP ENGINE

* The following figure summarizes some key features of GAE programming model for

two supported languages: Java and Python.

* A client environment that includes an Eclipse plug-in for Java allows you to debug

your GAE on your local machine.

* Also, the GWT Google Web Toolkit 1s available for Java web application developers.

* Developers can use this, or any other language using a JVMbased interpreter or

compiler, such as JavaScript or Ruby.

* Python 1s often used with frameworks such as Django and CherryPy, but Google also

supovlies a built in webaoo Pvthon environment.

[Datastore J

[Memcache]

Blobstore

Google corporate
apps (docs, sites
maps...)

[Google data API]

Python or Java application

[Tunnel servers]

===

[Your firewall J

Google app
secure data
connection SDC

URL fetch

Users Mail

Cron Images

< Secure intranet >

\

Admin
console

* There are several powerful constructs for storing and accessing data.

* The data store 1s a NOSQL data management system for entities that can be, at
most, | MB in size and are labeled by a set of schema-less properties.

* Queries can retrieve entities of a given kind filtered and sorted by the values of
the properties.

* Java offers Java Data Object (JDO) and Java Persistence API (JPA) interfaces

implemented by the open source Data Nucleus Access platform, while Python
has a SQL-like query language called GQL.

* The data store 1s strongly consistent and uses optimistic concurrency control.

* An update of an entity occurs in a transaction that is retried a fixed number of
times 1f other processes are trying to update the same entity simultaneously.

*Your application can execute multiple data store operations in a single

tran<action which either all cuicceed or all fail tooether

* The data store implements transactions across its distributed network using
“entity groups.”

* A transaction manipulates entities within a single group.

*Entities of the same group are stored together for efficient execution of
transactions.

*Your GAE application can assign entities to groups when the entities are created.

* The performance of the data store can be enhanced by in-memory caching using
the memcache, which can also be used independently of the data store.

* Recently, Google added the blobstore which 1s suitable for large files as its size
limit 1s 2 GB.

* There are several mechanisms for incorporating external resources.

*The Google SDC Secure Data Connection can tunnel through the Internet and

*The URL Fetch operation provides the ability for applications to fetch

resources and communicate with other hosts over the Internet using HTTP and
HTTPS requests.

*There 1s a specialized mail mechanism to send e-mail from your GAE

application.

* Applications can access resources on the Internet, such as web services or other
data, using GAE’s URL fetch service.

*The URL fetch service retrieves web resources using the same highspeed

Google infrastructure that retrieves web pages for many other Google products.

* There are dozens of Google “corporate” facilities including maps, sites, groups,

calendar, docs, and YouTube, among others.

* These support the Google Data API which can be used inside GAE.

* An application can use Google Accounts for user authentication.

* Google Accounts handles user account creation and sign-in, and a user that already
has a Google account (such as a Gmail account) can use that account with your app.

* GAE provides the ability to manipulate image data using a dedicated Images service
which can resize, rotate, flip, crop, and enhance images.

* An application can perform tasks outside of responding to web requests.

* Your application can perform these tasks on a schedule that you configure, such as on
a daily or hourly basis using “cron jobs,” handled by the Cron service.

* Alternatively, the application can perform tasks added to a queue by the application
itself, such as a background task created while handling a request.

* A GAE application 1s configured to consume resources up to certain limits or quotas.

* With quotas, GAE ensures that your application won’t exceed your budget, and that
other applications running on GAE won’t impact the performance of your app.

GOOGLE FILE SYSTEM (GFS)

*GFS was built primarily as the fundamental storage service for

Google’s search engine.

*As the size of the web data that was crawled and saved was quite

substantial, Google needed a distributed file system to redundantly

store massive amounts of data on cheap and unreliable computers.

*None of the traditional distributed file systems can provide such

functions and hold such large amounts of data.

*In addition, GFS was designed for Google applications, and Google
applications were built for GFS.

* In traditional file system design, such a philosophy 1s not attractive, as there should

be a clear interface between applications and the file system, such as a POSIX
interface.

* There are several assumptions concerning GFS.

* One 1s related to the characteristic of the cloud computing hardware infrastructure
(1.e., the high component failure rate).

* As servers are composed of inexpensive commodity components, it is the norm
rather than the exception that concurrent failures will occur all the time.

®* Another concerns the file size in GFS.

* GFS typically will hold a large number of huge files, each 100 MB or larger, with
files that are multiple GB 1n size quite common.

* Thus, Google has chosen its file data block size to be 64 MB instead of the 4 KB 1n
typical traditional file systems.

e N - 1° 1.°1°4._. °* " 1-° " "3 Vv T s g S T T T Y T S Y A st

Application | gjie name, chunk index) _y /foo/bar

- GFS master ‘
| [/" [Chunk 2¢f0
GPS diont File namespace -
(Chunk handle, :

[
chunk locations) _

Legend:

. —— Data messages
l Instructions to chunkserver » Control messages

Chunkserver state

GFS chunkserver GFS chunkserver
Chunk data Linux file system Linux file system

(Chunk handle, byte range)

* In GFS architecture, it 1s quite obvious that there 1s a single master in the

whole cluster.

*® Other nodes act as the chunk servers for storing data, while the single master

stores the metadata.

* The file system namespace and locking facilities are managed by the master.

*The master periodically communicates with the chunk servers to collect

management information as well as give instructions to the chunk servers to

do work such as load balancing or fail recovery.

* The master has enough information to keep the whole cluster in a healthy

state.

*With a single master, many complicated distributed algorithms can be

avoided and the design of the system can be simplified.

* A single master coordinates access as well as keeps the metadata.
* This decision simplified the design and management of the whole cluster.

*Developers do not need to consider many difficult issues in distributed
systems, such as distributed consensus.

* There 1s no data cache in GFS as large streaming reads and writes represent
neither time nor space locality.

*GFS provides a similar, but not identical, POSIX file system accessing
interface.

* The distinct difference is that the application can even see the physical location
of file blocks.

* Such a scheme can improve the upper-layer applications.

*The customized API can simplify the problem and focus on Google

cpl1Cas.

// *The goal 1s to minimize involvement of the master.

~» *The mutation takes the following steps: / m

3
Secondary
replica A

5
Legend:

— Control
Secondary — Data

repllca B

1. The client asks the master which chunk server holds the current lease for the chunk
and the locations of the other replicas. If no one has a lease, the master grants one to a
replica it chooses (not shown).

2. The master replies with the identity of the primary and the locations of the other
(secondary) replicas. The client caches this data for future mutations. It needs to
contact the master again only when the primary becomes unreachable or replies that it
no longer holds a lease.

3. The client pushes the data to all the replicas. A client can do so in any order. Each
chunk server will store the data in an internal LRU buffer cache until the data is used or
aged out. By decoupling the data flow from the control flow, we can i1mprove
performance by scheduling the expensive data flow based on the network topology
regardless of which chunk server is the primary.

4. Once all the replicas have acknowledged receiving the data, the client sends a write
request to the primary. The request identifies the data pushed earlier to all the replicas.
The primary assigns consecutive serial numbers to all the mutations it receives,
possibly from multiple clients, which provides the necessary serialization. It applies the
mutation to i1ts own local state in serial order.

5. The primary forwards the write request to all secondary replicas. Each secondary
replica applies mutations in the same serial number order assigned by the primary.

6. The secondaries all reply to the primary indicating that they have completed the
operation.

7. The primary replies to the client. Any errors encountered at any replicas are reported
to the client. In case of errors, the write corrects at the primary and an arbitrary subset
of the secondary replicas. The client request is considered to have failed, and the
modified region is left in an inconsistent state. Our client code handles such errors by
retrying the failed mutation. It will make a few attempts at steps 3 through 7 before
falling back to a retry from the beginning of the write.

* GFS was designed for high fault tolerance and adopted some methods to achieve this
goal. Master and chunk servers can be restarted in a few seconds, and with such a
fast recovery capability, the window of time in which the data is unavailable can be
greatly reduced.

BIGTABLE, GOOGLE’S NOSQL SYSTEM

* BigTable - Innovative Google technology

*BigTable was designed to provide a service for storing and retrieving
structured and semi-structured data.

*BigTable applications include storage of web pages, per-user data, and
geographic locations.

* Here we use web pages to represent URLs and their associated data, such as
contents, crawled metadata, links, anchors, and page rank values.

* Per-user data has information for a specific user and includes such data as user

preference settings, recent queries/search results, and the user’s e-mails.

* There are hunc 3 d there will be thousands of queries

per second.
@)
* The same scale occurs 1n the geographic data, which might consume more than /
O

100 TB of disk space.

* It 1s not possible to solve such a large scale of structured or semistructured data
using a commercial database system.

* This 1s one reason to rebuild the data management system; the resultant system
can be applied across many projects for a low incremental cost.

*The other motivation for rebuilding the data management system 1is

performance.

* Low-level storage optimizations help increase performance significantly,
which 1s much harder to do when running on top of a traditional database layer.

*The design and implementation of the BigTable system has the following
goals.

*The applications want asynchronous processes to be continuously updating
different pieces of data and want access to the most current data at all times.

* The database needs to support very high read/write rates and the scale might be

* Also, the database needs to support efficient scans over all or interesting subsets of
data, as well as efficient joins of large one-to-one and one-to-many data sets.

* The application may need to examine data changes over time (e.g., contents of a web
page over multiple crawls).

* Thus, BigTable can be viewed as a distributed multilevel map.
* [t provides a fault-tolerant and persistent database as in a storage service.

* The BigTable system is scalable, which means the system has thousands of servers,
terabytes of in-memory data, petabytes of disk-based data, millions of reads/writes
per second, and efficient scans.

* Also, BigTable 1s a self-managing system (i.e., servers can be added/removed
dynamically and it features automatic load balancing).

* Design/initial implementation of BigTable began at the beginning of 2004.

* BigTable 1s used in many projects, including Google Search, Orkut, and Google
Maps/Google Earth, among others.

GFS: AN _ A
Scheduler:
- Lock Service: S ping

| used to read/write BigTable data

“Contents” “anchor:cnnsi.com” “anchor:my.look.ca”

“‘com.cnn.www” —

(a) BigTable data model

BigTable client

BigTable cell BigTable master Metadata
\ BigTable client

Performs metadata cost library
load balancing

ead/write

BigTable tablet server BigTable tablet server BigTable tablet server

Serves data Serves data Serves data Open

Cluster scheduling system GFS Lock service

Handles failover monitoring Holds tablet data, logs Holds metadata
handles master election
(b) BigTable structure

CHUBBY, GOOGLE’S DISTRIBUTED LOCK
SERVICE

* Chubby 1s intended to provide a coarse-grained locking service.

*It can store small files inside Chubby storage which provides a simple

namespace as a file system tree.

* The files stored in Chubby are quite small compared to the huge files in GFS.

*Based on the Paxos agreement protocol, the Chubby system can be quite

reliable despite the failure of any member node.

* The following Figure shows the overall architecture of the Chubby system.

5 servers of a Chubby cell

Client
application

Chubby
library

Master

Client . Chubby
application : library

Client processes

* Each Chubby cell has five servers inside.
* Each server in the cell has the same file system namespace.
* Clients use the Chubby library to talk to the servers in the cell.

* Client applications can perform various file operations on any server in the Chubby

cell.
* Servers run the Paxos protocol to make the whole file system reliable and consistent.

o ('hiikhlhhy haec hecrame (Yanale’c nritmary 1tnfernal name coarviea

OPEN STACK

*OpenStack was been introduced by Rackspace and NASA 1n July 2010.

*The project 1s building an open source community spanning

technologists, developers, researchers, and industry to share resources
and technologies with the goal of creating a massively scalable and

secure cloud infrastructure.

*Currently, OpenStack focuses on the development of two aspects of

cloud computing to address compute and storage aspects with the

OpenStack Compute and OpenStack Storage solutions.

*“O

and

penStack Compute 1s the internal fabric of the cloud creating
managing large groups of wvirtual private servers” and

ccoq
SCa

penStack Object Storage 1s software for creating redundant,
lable object storage using clusters of commodity servers to

store terabytes or even petabytes of data.”

*Recently, an image repository was prototyped.

*The 1mage repository contains an 1mage registration and

discovery service and an 1image delivery service.

*Together they deliver images to the compute service while

obt

aining them from the storage service.

*This development gives an indication that the project is striving to

Integrate more services into its portfolio.

OPENSTACK COMPUTE

* As part of its computing support efforts, OpenStack is developing a cloud

computing fabric controller, a component of an [aaS system, known as Nova.

®*The architecture for Nova 1s built on the concepts of shared-nothing and

messaging-based information exchange.

* Hence, most communication in Nova is facilitated by message queues.

*To prevent blocking components while waiting for a response from others,

deferred objects are introduced.

* Such objects include callbacks that get triggered when a response 1s received.

®*To achieve the shared-nothing paradigm, the overall system state is kept in a
distributed data system.

* State updates are made consistent through atomic transactions.

* Nova it implemented in Python while utilizing a number of externally supported
libraries and components.

* This includes boto, an Amazon API provided in Python, and Tornado, a fast HTTP
server used to implement the S3 capabilities in OpenStack.

* The following figure shows the main architecture of Open Stack Compute.

* In this architecture, the API Server receives HTTP requests from boto, converts the

commands to and from the API format, and forwards the requests to the cloud
controller.

* The cloud controller maintains the global state of the system, ensures authorization

while interacting with the User Manager via Lightweight Directory Access Protocol
(LDAP) , interacts with the S3 service, and manages nodes, as well as storage

(oA

(ATA over Ethernet)
Cloud controller |

--

m

OPENSTACK STORAGE

*The OpenStack storage solution 1s built around a number of interacting

components and concepts, including a proxy server, a ring, an object
server, a container server, an account server, replication, updaters, and
auditors.

*The role of the proxy server i1s to enable lookups to the accounts,
containers, or objects in OpenStack storage rings and route the requests.

*Thus, any object 1s streamed to or from an object server directly through
the proxy server to or from the user.

* A ring represents a mapping between the names of entities stored on disk
and their physical locations.

* Separate rings for accounts, containers, and objects exist.
* A ring includes the concept of using zones, devices, partitions, and replicas.

®*Hence, 1t allows the system to deal with failures, and isolation of zones
representing a drive, a server, a cabinet, a switch, or even a data center.

* Weights can be used to balance the distribution of partitions on drives across
the cluster, allowing users to support heterogeneous storage resources.

* According to the documentation, “the Object Server is a very simple blob

storage server that can store, retrieve and delete objects stored on local
devices.”

* Objects are stored as binary files with metadata stored in the file’s extended
attributes.

*This requires that the underlying file system 1s built around object servers,

- 1.°* 1 °*_ 04 4oy I s | R | N e e e e

FEDERATION IN THE CLOUD

Cloud federation is the practice of interconnecting the cloud

computing environments of two or more service providers for the purpose of

load balancing traffic and accommodating spikes in demand.

* Cloud federation requires one provider to wholesale or rent computing resources

to another cloud provider.

* Those resources become a temporary or permanent extension of the buyer's

cloud computing environment, depending on the specific federation agreement

between providers.

* Cloud federation offers two substantial benefits to cloud providers.

* First, it allows providers to earn revenue from computing resources that would

otherwise be idle or underutilized.

* Second, cloud federation enables cloud providers to expand their geographic

footprints and accommodate sudden spikes in demand without having to build

new points-of-presence (POPs).

* Service providers strive to make all aspects of cloud federation from cloud

provisioning to billing support systems (BSS) and customer support

transparent to customers.

* When federating cloud services with a partner, cloud providers will also

establish extensions of their customer-facing service-level agreements (SLAS)

into their partner provider's data centers.

Cloud Federation

Sob o
. b

End User

Cloud Federation is the concept of bringing different services offered by various
Providers under a single platform .

FOUR LEVELS OF FEDERATION

*Creating a cloud federation mmvolves research and development at different

levels: conceptual, logical and operational, and infrastructural.

* The following figure provides a comprehensive view of the challenges faced in

designing and 1mplementing an organizational structure that coordinates
together cloud services that belong to different administrative domains and

makes them operate within a context of a single unified service middleware.

*Each cloud federation level presents different challenges and operates at a

different layer of the IT stack.

* It then requires the use of different approaches and technologies.

* Taken together, the solutions to the challenges faced at each of these levels

constitute a reference model for a cloud federation.

Conceptual Level

Motivations
Advantages
Opportunities
Obligations

Logical and Operational Level

Cloud Service, Provider, Agreements

Federation Model

Market and Pricing Models

Service Level Agreements

Protocol, Interfaces, and Standards
Programmatic Interoperation
Federation Platforms (RESERVOIR, InterCloud)

CONCEPTUAL LEVEL

* The conceptual level addresses the challenges 1n presenting a cloud federation

as a favorable solution with respect to the use of services leased by single cloud
providers.

*In this level 1t 1s important to clearly identify the advantages for either service

providers or service consumers in joining a federation and to delineate the new
opportunities that a federated environment creates with respect to the
single-provider solution. Elements of concern at this level are:

* Motivations for cloud providers to join a federation

* Motivations for service consumers to leverage a federation

* Advantages for providers in leasing their services to other providers
* Obligations of providers once they have joined the federation

* Trust agreements between providers

The functional requirements include:

* Supplying low-latency access to customers, regardless of their location
* Handling bursts in demand

*Scaling existing applications and services beyond the capabilities of the

owned infrastructure

* Make revenue from unused capacity

The motivations for joining a cloud federation also include nonfunctional

requirements. The most relevant are the following

* Meeting compulsory regulations about the location of data
* Containing transient spikes in operational costs

* Disaster recovery

LOGICAL AND OPERATIONAL LEVEL

*The logical and operational level of a federated cloud i1dentifies and addresses

the challenges in devising a framework that enables the aggregation of
providers that belong to different administrative domains within a context of a
single overlay infrastructure, which 1s the cloud federation.

* At this level, policies and rules for interoperation are defined.

* Moreover, this 1s the layer at which decisions are made as to how and when to

lease a service to or to leverage a service from another provider.

* The logical component defines a context in which agreements among providers

are settled and services are negotiated, whereas the operational component
characterizes and shapes the dynamic behavior of the federation as a result of

the single providers’ choices.

® This is the level where MOCC 1s implemented and realized.

It 1s important at this level to address the following challenges:

* How should a federation be represented?

* How should we model and represent a cloud service, a cloud provider, or an

agreement?

* How should we define the rules and policies that allow providers to join a

federation?

* What are the mechanisms in place for settling agreements among providers?
* What are providers responsibilities with respect to each other?
®* When should providers and consumers take advantage of the federation?

* Which kinds of services are more likely to be leased or bought?

* The need for SLAs is an accepted fact in both academy and industry, since SLAs
define more clearly what is leased or bought between different providers. Moreover,
SLAs allow us to assess whether the services traded are delivered according to the
expected quality profile.

* It 1s then possible to specify policies that regulate the transactions among providers
and establish penalties in case of degraded service delivery.

* This 1s particularly important because it increases the level of trust that each party
puts in cloud federation.

* SLAs have been 1n use since 1980 and originated in the telecommunications domain
to define the QoS attached to a contract between a consumer and a network provider.

* From there on, they have been used in several fields, including Web services, grid
computing, and cloud computing.

* The specific nature of SLA varies from domain to domain, but it can be generally
defined as “an explicit statement of expectations and obligations that exist in a
business relationship between two organizations: the service provider and the service
consumer.

® Purpose.

Nt ® Restrictions.

® Validity period.
* Scope. he SLA.

® Parties. ovider, consumer).
@

N

obie rvices on which both parties agree. These are

O)

s expressed by means of service-level indicators such as availability, performance, and reliability.
= The penalties that will occur if the delivered service does not achieve the defined SLOs.
/n Services that are not mandatory but might be required.

Processes that are used to guarantee that SLOs are achieved and the related

= 6. Enforce penalties LA violatior o

* Currently, a very rudimentary level of SLA management is present and the interoperability

~ *® Within industry, SLAs are still unilateral arrangements that are imposed by service

/ A among different cloud providers 1s mostly characterized by ad hoc aggregation.

providers and that the user can only accept rather than negotiate.

INFRASTRUCTURAL LEVEL

*The infrastructural level addresses the technical challenges involved 1n
enabling heterogeneous cloud computing systems to interoperate seamlessly.

*[t deals with the technology barriers that keep separate cloud computing
systems belonging to different administrative domains.

*By having standardized protocols and interfaces, these barriers can be
Oovercome.

* In other words, this level for the federation 1s what the TCP/IP stack is for the

Internet: a model and a reference implementation of the technologies enabling
the interoperation of systems.

* Services for interoperation and interface may also find implementation at the

SaaS level, especially for the realization of negotiations and of federated
clouds.

At this level it is important to address the following issues:

* What kind of standards should be used?

* How should design interfaces and protocols be designed for interoperation?

* Which are the technologies to use for interoperation?

*How can we realize a software system, design platform components, and

services enabling interoperability?

* Interoperation and composition among different cloud computing vendors is possible only
by means of open standards and interfaces.

* Moreover, interfaces and protocols change considerably at each layer of the Cloud
Computing Reference Model.

* As the more mature layer, the IaaS layer has evolved more in this sense.

* Almost every laaS provider exposes Web interfaces for packaging virtual machine
templates, launching, monitoring, and terminating virtual instances.

* Even though not standardized, these interfaces leverage the Web services and are quite

* The use of a common technology simplifies the interoperation among vendors, since
a minimum amount of code is required to enable such interoperation.

®* These APIs allow for defining an abstraction layer that uniformly accesses the
services of several [aaS vendors.

* To fully support the vision of a cloud federation, more sophisticated capabilities need
to be implemented.

* For instance, the possibility of dynamically moving virtual machine instances among
different providers 1s essential to supporting dynamic load balancing among different
[aaS vendors.

* In this direction, the Open Virtualization Format (OVF) aims to be a solution for this
problem and may eventually be successful, since it has been endorsed by several
cloud computing vendors.

* If we consider the PaaS layer, the interoperations become even harder since each
cloud computing vendor provides its own runtime environment, which might differ
from others in terms of implementation language, abstractions used to develop
applications, and purpose.

* An interesting case for interoperability at the SaaS layer is provided by online

office automation solutions such as Google Documents, Zoho Office, and
others; several of them provide the capability to export and import documents
to and from different formats, thus simplifying the exchange of data.

* Alternatively, composition seems to be a more attractive opportunity; different

SaaS services can be glued together to provide users with more complex
applications.

* Composition 1s also mmportant in considering interoperability across cloud

computing platforms operating at different layers.

*Even 1n this case it 1s important to note that, currently, cloud computing

providers operating at one layer often implement on their own infrastructure
any lower layer that 1s required to provide the service to the end user, and they
are not willing to open their stack of technologies to support interoperation.

*The vision proposed by a federated environment of cloud service vendors

still poses a lot of challenges at each level, especially the logical and
infrastructural level, where appropriate system organizations need to be

designed and effective technologies need to be deployed.

*Considerable research effort has been carried out on the logical and

operational level, and initial implementations and drafts of interoperable

technologies are now developed especially for the IaaS market segment.

